梯度下降算法

基本概念

梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最陡下降法,但是不该与近似积分的最陡下降法(Method of steepest descent)混淆。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。

梯度

梯度是多元导数的概括。平常的一元(单变量)函数的导数是标量值函数,而多元函数的梯度是向量值函数。多元可微函数$f$在点$P$上的梯度,是以$f$在$P$上的偏导数为分量的向量。

散度

散度(divergence)或称发散度,是向量分析中的一个向量算子,将向量空间上的一个向量场(矢量场)对应到一个标量场上。散度描述的是向量场里一个点是汇聚点还是发源点,形象地说,就是这包含这一点的一个微小体元中的向量是“向外”居多还是“向内”居多。

拉普拉斯算子

在数学以及物理中,拉普拉斯算子或是拉普拉斯算符(Laplace operator, Laplacian)是由欧几里得空间中的一个函数的梯度的散度给出的微分算子.

参考资料

  • 《深入浅出图神经网络》
作者

Leslie Guo

发布于

2021-03-04

更新于

2021-09-29

许可协议

评论